Computer Vision is one powerful tool that helps in predicting various tasks.In this blog, you will learn how to measure the distance between a person and a camera.
step 1 download the Haarcasde classifier to detect faces in real-time (haarcascade_frontalface_default.xml).
https://github.com/kipr/opencv/tree/master/data/haarcascades
Code:
import cv2 import sys import logging as log import datetime as dt from time import sleep cascPath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(cascPath) log.basicConfig(filename='webcam.log',level=log.INFO) video_capture = cv2.VideoCapture(0) width, height = int(video_capture.get(3)), int(video_capture.get(4)) out = cv2.VideoWriter("1.mp4", cv2.VideoWriter_fourcc(*"DIVX"), 15.0, (width, height)) anterior = 0 known_distance1 = 4.3 known_width1 = 48 known_distance2 = 2.2 known_width2 = 107 focalLength = known_distance1*known_width1 while True: # Capture frame-by-frame ret, frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30) ) # Draw a rectangle around the faces for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) if anterior != len(faces): anterior = len(faces) log.info("faces: "+str(len(faces))+" at "+str(dt.datetime.now())) if len(faces) > 0: cv2.putText(frame, "%.2fM" % (focalLength/faces[0][2]), (frame.shape[1] - 200, frame.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 255, 0), 2) # Display the resulting frame out.write(frame) cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows()